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Abstract
We use multipolar expansions to find the force on a gold-coated sphere above a
gold substrate; we study both an empty gold shell and a gold-coated polystyrene
sphere. We find four characteristic separation ranges. In the first region, which
for the empty gold shell occurs for distances, d, smaller than the thickness
of the coating, the result agrees with that on a solid gold sphere and varies
as d−2; for larger separations there is a region where the force behaves as if
the coating is strictly two-dimensional and varies as d−5/2; in the third region
the dependence is more unspecific; in the fourth region, when d is larger
than the radius, the force varies as d−4. For homogeneous objects of more
general shapes, we introduce a numerical method based on the solution of an
integral equation for the electric field over a system of objects with arbitrary
shapes. We study the effect of shape and orientation on the van der Waals
interaction between an object and a substrate and between two objects.

PACS numbers: 71.10.−w, 71.45.−d, 03.70.+k, 12.20.−m, 05.40.−a

1. Introduction

In his seminar paper [1], Casimir calculated the energy between two parallel perfect conductor
half spaces as the change of zero-point energy of the classical electromagnetic field,

U(z) = h̄

2

∑
i

[ωi(z) − ωi(z → ∞)], (1)

where ωi(z) are the frequencies of the electromagnetic field modes of the plates separated by
a distance z. This procedure has been employed by van Kampen [2] to study van der Waals
(vdW) forces of dielectric plates in the non-retarded case following an alternative derivation
of the Lifshitz formula [3]. Later Gerlach [4] interpreted the retarded Casimir forces in terms
of interacting surface plasmons of the plates. Most recently, the problem of Casimir energy
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between two dielectric plates has been revisited and it has been shown that it can be obtained as
the sum of contributions from the interacting surface plasmons and from the propagating modes
of a cavity formed by the parallel plates [5–7]. Apart from the original results for parallel
plates and slabs, a limited number of results exists for other geometries and combination of
materials. The most well known is the so-called proximity force approximation (PFA) [8].
In that model, the interaction between objects of various shapes is calculated in terms of the
energy between planar interfaces. In the case of a spherical object of radius R, above a planar
substrate, the force F becomes

F(z) = −dV (z)

dz
= 2πREp(z)

[
1 − 1

REp(z)

∫ z+R

z

dhEp(h)

]
, (2)

where z is the closest distance and Ep(h) is the interaction energy per unit area between two
planar interfaces a distance h apart. The first factor of the result is what one usually means
with the PFA. The second factor is a correction which we neglect in this work; this neglect
introduces an error of the same order of magnitude as in the PFA itself. In the case of vdW
forces, other analytical results exist for highly symmetric geometries. One of them is the
following general expression for the interaction energy between two cylinders, spheres or half
spaces at small separations [5],

EvdW = −A12(ω)

[
2πR1R2

R1 + R2

]1−n/2

�(1 + n/2)Lnd−(1+n/2), (3)

where n = 0 for spheres, n = 1 for cylinders and n = 2 for half spaces. R1 and R2 are the
radii of the two objects and d is the closest distance. L is in the cylinder case the length of each
cylinder and in the two-plate case the side length of each square plate. A12 is the so-called
Hamaker constant given by

A12(ω) = h̄

32π2

∞∑
l=1

1

l3

∫ ∞

−∞
dω

[
ε1(ω) − εa(ω)

ε1(ω) + εa(ω)

ε2(ω) − εa(ω)

ε2(ω) + εa(ω)

]l

. (4)

It has been shown that for larger separations, contrary to this formula, the energy is not
symmetric with the interchange of materials between the objects [9]. The results of (3) in
fact coincide with those obtained with the usual PFA approach for those geometries in the
non-retarded case, which we are concerned with here.

Another set of results use additivity of pair interactions between the atoms of two objects
to obtain the behaviour of the force at close and long distances. In spite of the well-known
fact that the Casimir force is not an additive interaction, there is a general consensus that
these results give the correct distance dependence of the forces. One example is that for two
cylinders: when they are parallel the vdW energy goes like ∼d−1.5 when d → 0, but when
they are crossed, a dependence ∼d−2 is expected, which is the same as between two spheres.

A spectral representation formalism has been employed [10] to obtain the resonance
frequencies of a sphere above a substrate from which one obtains the vdW energy. In the
spectral representation formalism, the optical response of a two-face system is expressed as the
sum of resonant terms from which it is possible to explicitly obtain its resonance frequencies
[11]. Those resonances correspond to the surface plasmons of the system. Furthermore, in that
formalism the effects of geometry and material are clearly separated; this makes it possible to
deduce the importance of the geometry in the resonances of the system, and consequently in
its vdW energy.

In this work, we use a multipolar method similar to that in [10] to calculate the vdW
interaction between a substrate at arbitrary separation from a spherical object with an internal
structure in the form of a sphere with a coat of a different material. We must mention that there

2



J. Phys. A: Math. Theor. 41 (2008) 164008 C E Román-Velázquez and B E Sernelius

10-8

10-6

10-4

10-2

100

102

104

10-2 10-1 100 101

R
× 

F 
(e

V
)

d/R

δ /R = 10
-7

δ /R = 10
-4

δ/R = 10
-1

δ

R

d

(a)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

|In
te

ra
ct

io
n 

E
ne

rg
y

| (
eV

)

d /R

Gold coated Polystyrene sphere 
above gold substrate

Increasing δ/R
δ/R = 0.0, 0.001, 0.01, 
0.05, 0.1, 0.3, 0.6, 1.0

PFA

(b)

δ/R = 0.0

δ/R = 1.0

Figure 1. (a) The radius times the force on a gold shell of radius R and thickness δ at a distance
d above a gold substrate as a function of d/R. See the text for details. (b) The interaction energy
for a gold-coated polystyrene sphere of radius R and coat thickness δ at a distance d above a gold
substrate as a function of d/R. The coat thickness takes on the values 0.0, 0.001, 0.01, 0.05, 0.1,
0.3, 0.6 and 1, in units of R, counted from below. The thick solid curve is the PFA result based on
two gold half spaces.

are no results for vdW interactions between finite objects with a structure formed by parts of
different materials. We also introduce a formalism for the determination of the vdW energy of
a system of objects of arbitrary shape, separation and orientation. We present results for the
vdW forces between cubes, and finite cylinders above substrates, and develop calculations of
lateral and rotational forces between objects.

2. Formalism

2.1. Multipolar method

First, we consider the system shown in the inset of figure 1(a). A system of four materials
bounded by two concentric spheres of radii R − δ and R with the centre of the spheres at
a distance R + z from the surface of a substrate. The material of the interior of the sphere
with radius R − δ has a dielectric function εi(ω); the coat or shell bounded by R − δ and R
contains a material with dielectric function εc(ω); the substrate has a dielectric function εs(ω).
The full sphere is immersed in an ambient with dielectric function εa(ω). It has been shown
[10, 12] that the multipolar moment Qlm of the surface charge induced by the fluctuations
of the electromagnetic field with multipolar component V vac

lm of the stochastic vacuum field,
satisfies the system of linear equations∑

l′

[
1

αl

δl,l′ + fcA
m
l,l′(z)

]
Ql′m = −V vac

lm , |m| � l, l′, (5)

where αl is the polarizability of the sphere (independent of m), fc = −[εs(ω)−εa(ω)]/[εs(ω)+
εa(ω)] and Am

l,l′ are the terms, of the matrix that relate the multipolar functions between the
different systems of spherical coordinates of the sphere and its image, that vanish when z → ∞
[10, 12]. For a homogeneous sphere, αl is given by

αm
l = − cl

u(ω) − nl

, cl = 4πla2l+1/(2l+1)/(2l + 1), nl = l/(2l + 1), (6)
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where a is the radius of the sphere and u(ω) = [1 − εsp(ω)/εa(ω)]−1 is the so-called spectral
variable. The function εsp(ω) is the dielectric function of the sphere material. From (5) and
(6) one can obtain a spectral representation for Qlm,

Qlm =
∑

l′

[∑
s

Cm
s;l,l′(z)

u(ω) − nm
s (z)

]
V vac

l′,m. (7)

The strengths Cm
s;l,l′ = √

clcl′U
m
s,lU

m
s,l′ are the so-called spectral functions, where Um

s,l is the
orthogonal matrix that satisfies∑

l,l′
Um

s,lH
m
l,l′(z)U

m
s ′,l′ = nm

s (z)δs,s ′ . (8)

Here, Hm
l,l′(z) = n0

l δll′ + fc

√
cl

√
cl′A

m
l,l′(z) is a real symmetric matrix. The resonance

frequencies are given by u
(
ωm

s

) = nm
s , and the vdW energy is obtained from (1). Note

that the matrix Hm
l,l′ (and consequently nm

s ) depends only on the geometrical properties of
the system and the dielectric properties of the substrate. In the case of a coated sphere, the
polarizability can be obtained using the boundary conditions of the electric potential as

αl = −nlR
2l+1 [nl − uic(ω)] − [nl − uac(ω)](1 − δ/R)2l+1

[nl − uic(ω)][nl − uca(ω)] + nl(1 − nl)(1 − δ/R)2l+1
, (9)

with uxy(ω) = 1/[1−εx(ω)/εy(ω)]. Now it is neither possible to find a spectral representation
of the system nor to obtain its resonances explicitly. One must rely on the argument principle
to calculate the energy of the system, as follows. The determinant of (5) becomes zero at the
resonance frequencies

G(ωs, z) = det

[
1

αl(ωs)
δl,l′ + fcA

m
l,l′(z)

]
= 0. (10)

It is possible to apply the argument theorem to the multipolar problem [9] and using the fact
that when z → ∞ the resonances are those of the isolated coated sphere to find that (1) is
given by

U(z) = − h̄

i4π

∫ i∞

−i∞
dω log

[
G(ω, z)

/ ∏
l

1

αl(ω)

]
. (11)

This expression can also be used in the case of experimental dielectric functions or complex-
valued model dielectric functions for the sphere and substrate.

2.2. Integral equation method

The multipolar method above gives very high precision results over a wide range of distances.
However, to deal with particles of other shapes the multipolar method becomes much more
complex and expensive numerically. On the other hand, for finite objects of arbitrary geometry
it is not possible to define one unique way of calculating the energy in the PFA approach.
For spheres and cylinders one considers small planes that interact with the opposite in the
direction parallel to the line that joins the centres of the objects. However, for more complex
geometries it is not clear how to define the interacting planes. Fuchs has developed a spectral
representation formalism for the calculation of the optical response, in the non-retarded limit, of
homogeneous objects of arbitrary shapes [13]. We use his basic formalism for the formulation
of a model to obtain the vdW interaction energy for systems of objects of arbitrary geometry.
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Fuchs has shown that the surface charge density, σ , satisfies the integral equation defined
over the surface 	 of the object [13],

Evac(r, ω) · n̂(r) = 2π
ε(ω) + 1

ε(ω) − 1
σ(r) −

∫
	

dS ′ n̂(r) · (r − r′)
|r − r′|3 σ(r′), (12)

where Evac is the stochastic vacuum field that excites the particle and n̂ is the surface normal
pointing outwards from the surface. The complete deduction of (12) is independent of the form
and connectivity of the surface [13]. We use this integral equation when 	 is the combination
of the surfaces of two finite arbitrary objects. The simplest numerical solution of (12) is
obtained, as in [13], by dividing the surface 	 in small fragments of area 
si and surface
normal n̂i and with homogeneous surface charge σi , centred at the points ri . As a result, one
obtains the linear system of equations,

2π
ε(ω) + 1

ε(ω) − 1
σi −

∑
j

Ri,j σj = fi, Ri,j = (1 − δi,j )
n̂i · (ri − rj )
si

|ri − rj |3 , (13)

and fi = E0(ri ) · n̂(ri ). A spectral representation can be obtained from solving (13),

σi = −
∑
j,s

C
i,j
s

u(ω) − ns

fj , (14)

where ns = (1 − ms/2π )/2, ms are the proper values of the matrix Ri,j , and C
i,j
s are obtained

from the matrix that diagonalizes Ri,j [13]. The resonance frequencies are given by u(ωs) = ns

and like in the case of the multipolar spectral representation of a sphere above a substrate, the
vdW energy could be calculated with (1).

3. Results and discussion

The vdW force is valid for distances smaller than a material-dependent value; for larger
distances, the results are modified by retardation effects. In the examples we have used gold
objects, which sets the limiting value to around 100 nm.

3.1. Free-standing spherical shells and gold-coated polystyrene spheres

For the calculations in this part, we first construct the matrix of the linear system (5) for a given
z/R. For the dielectric function of gold and polystyrene, we use those in [14, 15], respectively.
We calculate numerically the determinant and perform the integration of (11). An increasing
maximum number Lmax (l, l′ < Lmax) of multipoles is considered until the convergency of
the energy is reached.

In figure 1(a), we show the results for a free-standing gold shell above a solid gold
substrate. As long as one may neglect retardation effects the figure is universal, independent
of the size of the sphere. The thick solid curve is the PFA result when Ep(z), of (2), is
the interaction energy between two half spaces; here the force varies as d−2. We see from
the figure that the full result from using the multipolar method, thin solid curves, merge
with the thick solid curve for small enough separations. This only happens inside the figure
for the thickest of the coatings. For the other two examples, it happens for smaller separations.
For larger separations, there is a region where the result follows the PFA result when Ep(z)

is the interaction energy between one half space and one strictly two-dimensional film, dotted
curves; here the force varies as d−5/2, i.e., has a fractional power dependence. The dotted
curves are obtained as [16, 17]

R × F = 2πR2Ep(d) ≈ 0.1556
√

nh̄2e2/me

√
δ/R(d/R)5/2 (15)
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Figure 2. vdW forces between gold prisms the distance d above a gold substrate. The thin solid
curve is the result for a gold cube of side L. The dashed (dash-dotted) curve is the result for a
standing up (lying down) prism of length 2L. The thick solid curve is the PFA result for the cube,
or standing up prism, based on two gold half spaces.

The circles are the PFA result when Ep(z) is the interaction energy between a half space and a
film of thickness δ. Note that the last two calculations (dotted lines and circles) are extensions
of the PFA model; in the original model one used Ep(z) of two half spaces. The dashed curves
are the results from only including dipolar interactions.

Measurements of the vdW and Casimir interactions often involve spheres since in this
case the difficult problem of alignment is obsolete. In most cases these spheres are not solid
but coated; one assumes that the coated spheres may represent solid spheres. As we have
seen, this assumption is only valid for relatively small distances. In figure 1(b), we show the
interaction energy for a gold-coated polystyrene sphere above a gold substrate. This way of
displaying the results also provides universal curves, independent of the radius of the sphere.
The radius, R, is the value for the full sphere including the coating. We see that only the
spheres with very thick coatings behave as solid gold spheres.

3.2. Interaction between objects of arbitrary geometry

3.2.1. Objects above substrates. For the calculation of the vdW energy of these systems, we
define a discretization of the surface of the object in small areas specified by their positions,
normal vectors and sizes. With that information we construct the matrix Ri,j in (13) and obtain
the eigenvalues ms numerically and from them the resonance frequencies. Finally, the energy
is calculated with (1). Using a maximum of 1000 discrete elements per object, we reached
down to distances of 2% of its maximum diameter, within a numerical error of less than 2%,
as estimated from comparisons with calculations of [9, 10].

In figure 2, we show calculations for different prisms above substrates, of the same
material. The thin solid line shows the result for a cube of side L at a distance d; the dashed
line shows the result for a prism of height 2L and square base with side length L; the thick solid
line shows the result of (3). We note that when the cube and the square prism are very close
to the substrate the force equals the base area times the force per unit area between two half
spaces. At long distance the force is dominated by dipolar interactions which are proportional
to the volume. The dash-dotted line shows the result when the prism is lying down, i.e., one of
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Figure 3. The lateral energy for two gold square-based prisms.

the rectangular sides is parallel to the substrate. So for small separations the force on the cube
and standing up prism are equal, while it is twice the size on the lying down prism; for large
separations the forces on the standing up and lying down prisms are equal but the force on
the cube is only half the size. The result for a cylinder with height L and a circular base with
radius R = L/

√
π follows closely the result for the cube, with a deviation smaller than the

numerical error ∼2%. These results show that the shape of the side that faces the substrate is
not important. One consequence of this result is the additivity of the vdW energy for prisms:
at all distances the vdW energy for prisms of same height and arbitrary shape is approximately
proportional to the area of its base.

3.2.2. Interactions between two objects. The dependence of the vdW interaction on the
object shapes becomes more complex in the case of the interaction between two objects. The
interaction tends to modify the position and orientation of the particles to minimize the energy.
It is possible to consider configurations in which two important kinds of interaction arise:
lateral forces and rotational forces.

In figure 3, we show results for lateral forces between two prisms of height L/2 with
square bases of side L; they are placed above each other at a fixed distance d; they are displaced
in the horizontal plane a distance l from the complete parallel alignment. The solid line shows
the result when the prisms are displaced in the direction parallel to one of its side faces. The
dashed line shows the result when the prisms are displaced in the diagonal direction relative
its base (see the lower inset of figure 3). We note that both curves reach a minimum in the
position of complete alignment. From this, one can expect an oscillatory behaviour around
this position. Even thought one could expect the additivity of the interaction in the limit when
the particles are close to each other, there is no such additivity with the conditions considered
here. In the diagonal displacement, the area of interaction increases differently from that in the
other type of displacement. However, the energy shows an increase similar to that for the other
displacement. This result suggests that the surface and boundary effects due to the interaction
between the surface plasmons of the different objects is more important in the generation of
lateral forces than in the case of an object above a substrate.

In figure 4, we show results for the rotational energy between two crossed cylinders as
shown in the inset. The cylinders are rotated relative to each other an angle θ around an axis

7
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Figure 4. The rotation energy for finite gold cylinders the distance d = 0.3L apart.

passing through their centres. The angle varies from 0 to π/2. The upper two curves are for
cylinders with circular cross section of diameter L. The dotted (solid) curve is for cylinders of
length L (2L). The lower two curves are for cylinders with square cross section of side length
L. The dashed (dash-dotted) curve is for cylinders of length L (2L). In all cases the closest
distance, d, is 0.3L.

We see that in the case of perpendicular cylinders the interaction energy for short and long
cylinders are not the same, in disagreement with the prediction from the PFA model. This fact
shows that the interaction between the parts of the cylinder that do not face parts of the other
one has a strong contribution to the interaction energy. In spite of the fact that the interaction
between the circular cylinders shows a change of behaviour from that between two spheres,
∼d−1, when they are fully crossed to that between two parallel cylinders, ∼d−3/2, when they
are aligned, we observe the strongest changes of energy in the case of square cylinders; this is
due to the fact that the plane surfaces have a stronger interaction than the curved surfaces. We
can also see that there is no perfect additivity in this configuration. In the case of complete
alignment (θ = 0) the cylinders of double length do not show double energy.

Acknowledgments

This research was sponsored by EU within the EC-contract No:012142-NANOCASE, a grant
for computational time at NSC in Sweden is acknowledged and we thank the organizing
committee of the QFEXT07 for the partial support to attend the workshop.

References

[1] Casimir H B 1948 Proc. K. Ned. Akad. Wet. 51 793
[2] van Kampen N G, Nijboer B R A and Schram K 1968 Phys. Lett. A 26 307
[3] Lifshitz E M 1956 Sov. Phys.—JETP 2 73
[4] Gerlach E 1971 Phys. Rev. B 4 393
[5] Sernelius Bo E 2001 Surface Modes in Physics (Berlin: Wiley-VCH)
[6] Sernelius Bo E 2005 Phys. Rev. B 71 235114
[7] Intravaia F and Lambrecht A 2005 Phys. Rev. Lett. 94 110404
[8] Derjaguin B 1934 Kolloidn. Zh. 69 155

8

http://dx.doi.org/10.1016/0375-9601(68)90665-8
http://dx.doi.org/10.1103/PhysRevB.4.393
http://dx.doi.org/10.1103/PhysRevB.71.235114
http://dx.doi.org/10.1103/PhysRevLett.94.110404
http://dx.doi.org/10.1007/BF01433225


J. Phys. A: Math. Theor. 41 (2008) 164008 C E Román-Velázquez and B E Sernelius

[9] Noguez C and Román-Velázquez C E 2004 Phys. Rev. B 70 195412
[10] Noguez C, Román-Velázquez C E, Esquivel-Sirvent R and Villarreal C 2004 Europhys. Lett. 67 191
[11] Bergman D J 1978 Phys. Rep. 43 377
[12] Román-Velázquez C E, Noguez C and Barrera R G 2000 Phys. Rev. B 61 10427
[13] Fuchs R 1975 Phys. Rev. B 11 1732
[14] Lambrecht A and Reynaud S 2000 Eur. Phys. J. D 8 309
[15] Israelachvili J N 1992 Intermolecular and Surface Forces (London: Academic)
[16] Sernelius Bo E and Björk P 1998 Phys. Rev. B 57 6592
[17] Boström M and Sernelius Bo E 2000 Phys. Rev. B 61 2204

9

http://dx.doi.org/10.1103/PhysRevB.70.195412
http://dx.doi.org/10.1209/epl/i2003-10282-0
http://dx.doi.org/10.1016/0370-1573(78)90009-1
http://dx.doi.org/10.1103/PhysRevB.61.10427
http://dx.doi.org/10.1103/PhysRevB.11.1732
http://dx.doi.org/10.1007/s100530050041
http://dx.doi.org/10.1103/PhysRevB.57.6592
http://dx.doi.org/10.1103/PhysRevB.61.2204

	1. Introduction
	2. Formalism
	2.1. Multipolar method
	2.2. Integral equation method

	3. Results and discussion
	3.1. Free-standing spherical shells and gold-coated polystyrene spheres 
	3.2. Interaction between objects of arbitrary geometry

	Acknowledgments
	References

